Deep Task-Based Analog-to-Digital Conversion
نویسندگان
چکیده
Analog-to-digital converters (ADCs) allow physical signals to be processed using digital hardware. Their conversion consists of two stages: Sampling, which maps a continuous-time signal into discrete-time, and quantization, i.e., representing the continuous-amplitude quantities finite number bits. ADCs typically implement generic uniform mappings that are ignorant task for is acquired, can costly when operating in high rates fine resolutions. In this work we design task-oriented learn from data how map an analog representation such system efficiently carried out. We propose model sampling quantization facilitates learning non-uniform data. Based on learnable ADC mapping, present mechanism optimizing hybrid acquisition comprised combining, tunable with fixed rates, processing, by jointly its components end-to-end. Then, show one exploit systems as deep networks optimize given utilizing Bayesian meta-learning techniques. evaluate proposed task-based case studies: first considers synthetic multi-variate symbol detection, where multiple simultaneously acquired order recover set discrete symbols. The second application beamforming channel ultrasound imaging. Our numerical results demonstrate approach achieves performance comparable resolution while reduced overall bit rate. For instance, enable accurate reconstruction images $12.5\%$ bits used conventional ADCs.
منابع مشابه
Analog to Digital Conversion
1 ADC TYPES Analog-to-Digital Converters (ADCs) transform an analog voltage to a binary number (a series of 1’s and 0’s), and then eventually to a digital number (base 10) for reading on a meter, monitor, or chart. The number of binary digits (bits) that represents the digital number determines the ADC resolution. However, the digital number is only an approximation of the true value of the ana...
متن کاملPhotonic Analog-to-Digital Conversion
280 INTRODUCTION Accurate collection and processing of electromagnetic information is critical to a wide variety of applications. Present day RF and microwave sensor systems must cover many frequency bands, detect and identify a large range of signal powers, and analyze the signal information on an ever-decreasing time scale. Simultaneously achieving these attributes typically requires multiple...
متن کاملsignal specific successive approximation analog to digital converter
چکیده: در میان انواع متفاوتی از مبدل های آنالوگ به دیجیتال که تا کنون معرفی شده اند، مبدل های آنالوگ به دیجیتال تقاریب متوالی(sar ) به علت سادگی ساختار و همچنین توان مصرفی کم، همواره یکی از پرکاربرد ترین مبدل های آنالوگ به دیحیتال در کاربرد های بایومدیکال بوده اند. به همین دلیل تاکنون روش های متعددی برای کاهش هرچه بیشتر توان مصرفی در این مبدل ها ارائه شده است که در اکثر آنها توجهی به مشخصات سی...
15 صفحه اولArtificial Spiking Neurons and Analog-to-Digital-to-Analog Conversion
This paper studies encoding/decoding function of artificial spiking neurons. First, we investigate basic characteristics of spiketrains of the neurons and fix parameter value that can minimize variation of spike-train length for initial value. Second we consider analog-to-digital encoding based upon spike-interval modulation that is suitable for simple and stable signal detection. Third we pres...
متن کاملSignal-Dependent Analog-to-Digital Conversion based on MINIMAX Sampling
This paper presents an architecture of signaldependent analog-to-digital converter (ADC) based on MINIMAX sampling scheme that allows achieving high data compression rate and power reduction. The proposed architecture consists of a conventional synchronous ADC, a timer and a peak detector, and AD conversion is carried out only when input signal peaks are detected. To improve the accuracy of sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2022
ISSN: ['1053-587X', '1941-0476']
DOI: https://doi.org/10.1109/tsp.2022.3229947